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A METHOD-OF-MOMENTS SOLUTION FOR DISPERSION CHARACTERISTIC S
OF ARBITRARILY-CONFIGURED TRANSMISSION MEDIA

I. INTRODUCTION

The success of microstrip in microwave integrated circuit appli-

cations has caused considerable interest in the calculation of dispersion

characteristics of these lines. A number of different techniques tl-4~
have been employed to obtain dispersive effects of open and shielded

inicrostrip—like transmission lines with rectangular cross-sections.

Since uiicrostrip becomes lossy and difficult to fabricate at higher

microwave frequencies, attention has focused on configuring new trans-

mission media. In this report we present a technique for calculating the

dispersion characteristics of electromagnetic wave propagation along

guiding structures consisting of a finite number of uniform dielectric

regions of arbitrary cross-sections within a conducting enclosure.

Conducting strips may also be present at the interface between two di-

electric regions . It is assumed that the thiciciess of the conductors

is negligible.

In Section II the problem is formulated on the basis of the

equivalence principle. A set of linear integro-differential operator

equations for the equivalent current sources are obtained by applying the

appropriate boundary conditions at each interface. In Section III the

operator equations are converted into a matrix formulation by the method

Not.: Manuscript submitted July 29, 1977.
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of moments C6,7,8]. The numerical methods used to determine the

propagation characteristics and results f or specific examples are

described in Section IV.

II. INTEGRO-DIFFERENTLAL EQUATIONS

Pig.l shows the generic cross-section of the guiding structure

under consideration. N is the number of discrete homogeneous,

isotropic dielectric regions inside the conducting enclosure. The

heavy lines on the interface between two dielectric regions denote
-,

conducting strips. The electric (~
) and magnetic (H) fields in each

region will be obtained by applying the principle of equivalence [5].

In accordance with this principle the dielectric medium of the p-th

region (characterized by permittivity is fictitiously extended to

fill all space and combinations of electric (JP) and magnetic (M17)

surface current sources are conceptually placed on the boundary S of
— 

p

the p-th region. ? and are to be determined in such a way that

E and H are zero everywhere outside S~ and are identical to the fields

E~ and H~ at each point in the interior of the p-th region for the

original problem shown in Fig. 1. This procedure is repeated for each

of the regions inside the conducting enclosure. The current sources

for the various regions are not all independent because of the boundary

2

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I_I...— - -
~~

.- . —. ~~ -.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
-..- - . ____________

F

conditions to be satisfied at all the interfaces. Fig.2 symbolically

shows the contour of the p- tb region and the surface current distri-

butions on it. is taken to be zero on the conducting segments of

the boundary . Also shown in Fig.2 is a left-handed coordinate system
A A A A

with unit vectors ~~ n~ and z. is tangential to the contour c~

(counterclockwise), inward drawn normal to the region p and

perpendicular to the plane of Fig.2 • For two adjacent regions p and p’,
A A A Awe have — - and n — - n , on the portion of boundary co~mon

to both the contours c and c ,.  is the same for all regions .p p

Since and are surface currents, we have the relations : 7

H
(1)

P — 0

From the equivalence principle:

— — A op_ -

3 (p, z) n X H  (p, z)

(2)— — A — — —M (p , z)— —n X E (p, a)

L _ _ _ _
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where E~~ and H 1’ denote , respectively, the electric and magnetic

fields at a point just inside the contour c~ . p is a position vector

in the tangential plane . In equation (2) O is on c~.

From Maxwell’s equations the electric (V) and magnetic (H g) fields

at any point in the croasseccion of Fig.2 may be written as

- C E 7 X F + j  w A + ~ 
‘

~~~~~~~~~~~~~~ + j~~~~W F I’+ I~~ V C P p , (4)

where p — 1, 2, . ..,  N . ~~~‘ and are the vector
_
and scalar potentials,

respectively, due to the electric current sources (31’) residing on the

contour ~~ Similarly, and are the vector and scalar potentials,

respectively, due to the magnetic current sources (M1’) residing along

c
1’
. w.~ is the free space permeability. In equations (3)-(4) a time

dependence of eiWt has been assumed for the sources.

The potentials A , F, 
~~ 

and are given by

+iwt
a, t) — 

~~~~~~~~ 

Y 1 ’  (; ,, z)C(k~ R)di” , (5)

F (p , a, t) — s- a 5 M~ (p’, z)G(k~ R)di-’ (6)

~ (, a, t) — _ (lIiwc~) a 7’ . ~ 1’ G’ ,. z, t)G(k~R)d~’ , (7)

- .  - — 
_  
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iwt
CD~ (0 ,  z, t) - ( l/ j u ~~~)e ~~~~

‘ . f1’(p ’, a , t)G(k~R)d r ’ . (8)

where R Jo  - p ’I  is the distance between a field point (p) and a

source point (pt), k~ — + k J  and G(k~ R) is the two-

dimensional Green’s function. If (~~e w’+ ka) is positive, G(x) can be

expressed in terms of H~~~ (x) , the zero order Hankel function of the

second kind, as

G(x) — (l/4j)H~~~(x); (9)

while for (ii s~u? + k )  negative

G(x) - (l/2Tr)~~~(x) , 
- 
(10)

where K
0 (x) is the zero order modified Bessel function.

The gradient operators ~ and v’operate on the field points and the

source points respectively. The operator V ’may be written as

‘
~‘ ~t +z~~ (1].)

where is the tangential part of the vector. The electric (~~) and

magnetic (p ’) fields in the p-tb can be calculated by substituting Eqs.

Eqs. (5)--(lO) in Eqs . (3) and (4). We assume that the sources vary
- k z

as e a along the a-axis . For lossless propagation k
~ 

= i~ . By using
-.

the one-dimensional divergence theorem terms like (V~ . J~
’ )G in Eqs.(7~

and (8) may be expressed in the form J P . 7~ G. Furthermore, we have

_ _ _  A ~~~~~~~~~~~~~~~ 
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7~
’ G(k~ R ’~ = - 

~~~~ 
G(k~1u = R ~P ~G(X ) 

(12)

-S -S

where x —  k~R and R = (p - Q ’)/R is the unit vector frum the source

point (p ’) to the field point ( p ) .  Using these relations and after
-5 -Ssome vector manipulations the tangential components of E~ and H ” at a

point P jus t inside the contour c~ may be expressed in the following

form:

r k2 
~~~~k k 1’ ( & Aj~. & w  

L_ J
d.r t ~1’, G(x) ~l + -

~~

_ 

k~ J dr ’ J~ , r’. B. G’(x)

(ii)

+~~~~fd1.J t~”
. 
~~

G5 (x)~~1
1’
v]

k Ic1’
— 

~~~~~~~~~ [J~~~~

, 

~~ka G’ (x)

A A f Ic1’ 
•
\ (k~) 3 

A. •~
.

- I d’r’J~., (r’. ‘r) ( G(x ) + ~ G’(x) + 
— 

~ (~ ‘ . R) (i . B.) •

ek2R I s - k8
P °  / P 0

(14)

1c~~R 
G’ 

(x)j 

Ic A
- j~

- J di” G’ (x) (n • B.) M
a l + ~~

- fdr
I (a ’ . T) G(x) M1~~]

r 6

.~~~k — —~ — _______ —~~~~ - ____________________________
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= (
~~€ ~) ku 

[ _  
j~~ ~ 

di” J~~, ~~~
‘ 

~~ G~x + 

~~~ (i 
+ 

~:~0
a ) 

~ 

di” ~~~ G(x

kk~ (~
- dT ’ M , T ’ R G ’(x’

~
k2 ) T

0

(15)

= (~ c ) ~ w di” J~ , (
~~

. R) G 5 (x ) - ~~ ~~~~~~~~~ J~ , ~~~‘
. 

~~ G(x)
o )

kk~ (
- —

~~
.--

~~ d ’r ’ M”, ? ~ G~x)
k 2 J  Z

( (
+€ di” ~~ j~ (~r . ~r ’)L G(x)  + 

__~2.’~~ G’(x)] (16)

I e k 2 RH
+ (i” . R)(~ 

. R)[G”(x) - u— G’~X)]fl .
e k 2 k~~R JJp

• Here we have replaced the variable M by M , where

= -j(€ /~~)~ M~ , ( 17~

so that M~ is of the same dimension as J~
’ . = ~ 1€ is the relative

p P
dielectric constant of the p-th region. k

0 
= w ~‘~~~~~~ € is the free space 7

wave vector. (i~, ~~~ , ~) and (ft’ , ~~~‘ , ~~~
‘ ) denote unit vectors at the field

7A _ _ _  _ _ _ _ _
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point (P) and the source points ( F ’) ,  respect.;~aly . Also G ’ ( x)  —

and G” (x)  = ~
2 GI~x 2 wi th  x = V

If the dielectric medium of tL,e p—th region is fictitiously ex—

tended to all space, then the tangential components of thc fields at a

point P~ just outside the contour c are given by (See Eq.(2))

~~ = E~~ + j(~~/s)~ M1’

(18)
Er = Er _ j (~0/~~~~ ~~

= H~ J (€ / ~~)½ ~

(19)

= Hr + j ( € / ~~~)~ j~ - 

—

Equations (13~-(19) for the tangential components of and H~ hold

for each of the dielectric regions p - 1,2 , N.

The following boundary conditions are now imposed for each of the

N dielectric regions in the problem at hand. On the conducting surfaces

E~~~= O  ,
Z 

(20)

E~~~= 01~

and on the dielectric—dielectric interfaces 

_  _ _ _ _ _ _ _  _
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z
(2 1)

Er = 0

E~~- E~ , = 0

(22)

= 0

= 0

where E and H are given by equations (13)—(L9). The region p’ is

adjacent to the p—th region in the structure shown in Fig.l. On the

portion of the contour comnon to regions p and p ’ , ‘
~~~

‘ = -? and 2’ = 2.

In equations (20)=(22), p — 1, 2, ...., N. Also for each p in equations

(22), p ’ = 1, 2 , N where N is the number of regions adjoining

the p-tb region.

On substitution of equations ( 13)-( 19) in equations (20) - (22) ,  we

obtain the set of integral equations to be satisfied by the current

sources 31’ 
, M1’ in all regions. .11’ and in the different regions

are not all independent because of the boundary conditions in Equation (22) .

From equations (2) and (22) it is seen that

-5
-J *J t

H~ = — M ~’

-Sn ,

3 r = — j r

on the dielectric-dielectric interfaces.

_______ _____ ~~~~~~~~~~~~~~~~~ ______ .
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III. MATRIX FORMULATION

The propagation characteristics are determined by solving the

system of equations (13)-(22). These equations are reduced to matrix

form by the method of moments ~6]. The simplest approx imation con-

sists of using pulse functions for a basis and point matching far

testing. For this purpose the contour c
1’ 

is divided into n~ segments

and pulse functions defined as:

1 on ~-th segment ,
42~3)

= 0 on all other segments.

The segments are not necessarily of equal length.

Let: 
-

jP SP Sp
a ~ l

II ~ S~2 
flP S~2 (24)

fP +~~~~ fP
0 

~~n
1’+1 S~3

0

where

= number of conductor segmentà on c~

— n1~ - u~ — number of dielectric segments on

10 
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The segment numbers have been rearranged such that ~ — 1, 2 ,

represent conductor segments and ~ = n~ + 1 , a~ are dielectric

segments.

On substitution of Equation (24) in Equations ( 13)-(22) and

satisfying the resultant equations at the midpoint of each segment

we obtain the following system of equations: Equations (20) and (21)

become :

a1’ a1’
c d

_ p  — p
L~L. ~~~~ ~ A + 

~::•. Q~~~ ~~~p 
S - 0 , (25)

“ 

~—l ‘
~~~~~ c

C

-~ I
where

a — 1, 2, •. . .,  n~

p — 1, 2, .•..,  N , —

and equation (22) transforms into :

u
p a”

~~ :~~~ 

+ ~~~~~~~ T
6
P 

, (26)

+ ~ 
R5,~ ~ + ~~ ~:“~~+nP’ 0,

where the index 8 runs over all dielectric segments ~ msou to the

adjoining regions p and p ’. The index 5’ for the contour ~~ refers

to the same segment as the index 8 for the contour ~~ A set of

L

ii 

_ _ _ __ _ _  
- -~~~~~~~~~~~~~~ - - -~~~~~~~

.-- - .-~~~~~-----



I_____. — 
—c————-. -.-—-—-— ... ..--— -- .---- ,.- 

~~~~~~ 

- .. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— — .--.- -

~ 

. -

~~~~~~

p

11

equations similar to Equation (26) holds for each distinct pair (p, p ’)

of adjacent regions. In equations (25) and (26), is a 1x2 vector

representing the two components of the electric current source on

the S-tb conductor segment of contour ~~ The 1x4 vector denotes

the two components of 3 and two components of N
5 , 

the current

sources on the 5-th dielectric segment sa contour c
r

:. Each element

is a 2x2 subinatrix and each element a 2x4 submatrix. The two rows

of these submatrices correspond to the two components of E 1’ . Similarly

each element (and R~~~) is a 4x2 submatrix and each element

or a 4x4 submatrix. The four rows of these submatrices

correspond to the two components of E and two components of N P in

Equation (22). The expl.icit forms of the matrix element of

Q~~~ , R!~~, T~ ~~~
, Ra”5 

and are shown in the Appendix.

Equation (25) is a set of 2n1’ equations in 2n~ + 4n~ variables

for the p—tb region. Equation (26) is a set of 4m equations (tu being

the niinber of dielectric segments comson to regions p and p ’) in

+ 4n~ + 2n~~+ 4n~ variab les of the regions p and p .  These equations

for all the N regions and for all distinct pairs of adjacent regions

can be manipulated in such a way that the current sources S on the

dielectric segments are expressed in terms of S , the current sources

on the conductor segments and then a matrix equation involving S

only is obtained:

(27)

L~. ~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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where S is a one-column vector with M components given by:

M 2  ~~~ n1’ (28)

p—I.

and H is a Z~~i matrix.

If the cross-section of the guiding structure is sysmetrical about

an axis in the transverse plane, then the problem can be reduced to

modes having either even or odd sysnuetry with respect to this axis.

In such a case, we have (for the ordering of segments as in Fig.3):

V — 4(1)J+l ~~~~~

,

- 

a ±(-l)~~~
’ 

~
+ ~,j n~ + 1 - ~~~

, j , (29)

~ P ~.~~~~~~(_1)
i V

n~~+a,j+ 2

where

j — l , 2

— 1, 2, ...., n~/2 ,

a — 1, 2, ...., n~
1’/2

The +(-)  sign in Equation (29) applies to modes with even (odd) symsetry.

13
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By virtue of the definitions used for 2 and ~~
‘
, for even symse try modes

‘
-‘I

and M
~ 

remain unaltered while and N5 chan~~s sign under reflection

about the symactry axis. The opposite is true for odd symsetry modes.

Using Equation (29) the set of equations given by Equations (25)

and (26) can be reduced to the following form:

p pa ,2 ad 2

~~ ~P — 0 , 
(30)

p pa ,2 . a4,2

+ 
�~~~

“6,nP+5 
~~~~5= 1 5— .l (31)

Pt 
ni,

1
U d/2

+ 
~~~ ~~~~~~~~~~~~~ ~~~~ ~~~ ~~~~~~ ~~~~~ ~~~~~ 

-

5=1 5=1 C

• where a = 1, 2, ...., and the index 6 runs over the dielectric

segments co on to regions p and p ’ lyl .g to the right of the syssnetry

axis in Fig 3. The indices p, p ’ and 6’ have the same meaning as in

Equations (25) and (26). In equations (30) and (31), the quantities

R and are given by the relation:

/A~ \ a IA?  ± 
(_1)i+1 ~? , (32)

ç’ae 
)ii ~~ 

c~s 

)
ii (a

. n:+s) i~

IL 14 
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and QP ~ •~a ~ 
and have the form :

In j + 1 /
-‘ ( 

Ar + (-1) 1

k ~~ n~ ± 
~ 

j a, + 5 ) a ,u~+l-5 for j  — 1,2
\ - 

~~~~~ 
~~ 

c 
/ i j  ij

= (AP ±(-l)~ (A P for 3 — 2, 3.
a, + 5 1 a,

/ij  ij

(33)

The (+) and (-) signs in Equation (33) apply to the even and odd symeetry

modes respectively. After elimination of the variables ~ ~~, an equation

similar to Equation (27) is obtained where H is now of dimension (11/2) x

• .(M12). Because of the smaller dimension, the computation time for the

calculation of the determinant of the matrix H is greatly reduced.

IV. NtJNERICAL RE SULTS

Since the components of the vector S in Equation (27) are all

independent, a solution exists if and only if

Det IH(f, k!)J = 0, (34)

where f — w/2rr is the operating frequency and Ic~ is the phase constant

in the direction of propagation. For a given f, the propagation constant

is determined by finding k such that Equation (34) is satisfied. There

will be several values of for each f corresponding to different order

modes. The cut-off frequencies for the different modes may be obtained

_ _ _ _
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by searching for f such that Det IH~ = 0 when k 0. In general,

Det IHI is complex. So Equation (34) implies that

Re[Det HJ = 0 , (35 )

ImCDet~~~ — 0  (36)

The expansion set used inEq.iation (24) is only an approximation to the

exact current sources. Due to this approximation, the values of

needed to satisfy Equations (35) and (36) are, in general, slightly
• diUerent. Therefore, an adequate approximate solution is obtained

by requiring that:

IDet (H(f, k~ ) ) I  — minimum. (37)

In actual numerical calculation a few spurious roots occur in the solution

of Equation (34). The actual roots are identified by the following three

criteria: (1) that gives the deepest local minimum in IDet HI,

(2) real and imaginary parts of Det H should change sign near , and

(3) the difference in the values of k
~ 
satisfying Equations (35D and (36)

is smallest. Also, the spurious roots shift appreciably when the number

of segments in a contour is changed 133 .

To illustrate the accuracy of the present method , results computed

for a shielded-microstrip cross-section shown in Fig.4 are plotted in

Fi3.5. The calculated dispersion characteristics of the fundamental and

higher order even-symsetry modes agree reasonably well with the theoretical

16
_ _  -—-~~~~~~~-.---~~- . - ~~~~~~~~~~~~~~~~~~ -~~ 
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results in references 2 and 4. Although only even-symme try modes

are shown in Fig.5 , the method is applicable to all types of modes,

symmetric or otherwise.

We next show the dispersion characteristics of a channelized

suspended microstrip C9J . The cross-section of the structure is

shown in Fig.6. The channel located above the conducting strip helps

suppress higher-order mode propagation. The structure has two

additional useful features: (1) reduced dissipation loss CLOJ , and

(2) easier fabrication due to wider strip widths for 50C2 impedance

level. The calculated dispersion curves are shown in Fig.7. The

lower three curves represent the fundamental mode for three

different values of W/ff (= 1, 3, 4), the ratio of the width of the

conducting strip and the height of the channel above it. The upper

two curves are two higher order (even symmetry) modes for Will = 3.

The associated TEN phase constants in air and dielectric material

(c — 10.0) are shown in the figure for reference. As can be seen in

Fig.7, the phase constants for the fundamental mode at lower frequencies

are nearer to that in air and at high frequencies go towards the values

for the dielectric medium. The cut-off frequencies for the next two

even-sysm~atry higher order modes are 17.2 GHz and 27.4 GUs, respectively.

V. DISCUSSION

The computer-aided analyses described in this paper can determine

the dispersion and higher order mode characteristics for a wide variety

of transmission structures having different geometries and material
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parameters. The analyses includes the effects on propagation due

to an arbitrarily shaped conducting enclosure. The analyses presented

• here can provide design information for planar transmission media

which employ composite conductor and/or dielectric materials. The

analysis can be readily extended to determine other propagation

characteristics such as electric and magnetic field distributions,

modal currents, impedance parameters and dissipation losses. 
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APPENDIX

The matrices P. Q, R, R, T and T in Equations (25 ) and (26) may

be obtained in a straightforward manner by substituting Equations

(l3)-(l9~ and Equation (24 ) in Equations (20)-(22) as stated in the

text.

The matrix elements P~~5 
for a 

~ 5 are given by:

(9a ~ ) 11 = - + 
~~ k3 ) G ( k~ Ra5 ) W

5

(~~a 5) 12 
- (

~ 
k~ / 

~ 
k3)  G ‘(k ; ~ a~~ ~~s ~a ~

(Al)

(~~~e ) 21 (k 
k~/~i, IC:
) 

C’ ( k~’ H a ~~ 
ra ta ~ W5

(
~ 

) 22 - G .( k~ R~~~ ) + C’ a ~)

- { (k~) ~ /~ i,
k } (Ta ~ 

) (
~~~~~ 

. 
t~ 

5

) (k~ R~ 5 ) - 

t~~~a:

a ~

where — ka - and 
~ a - 

~a is the position

vector of the midpoint of the in-tb segment and ra and na denote,

respectively the t~~it vectors at that point along the tangent and the

normal to the contour . W
5 

is the width of the m-th segment . For a — 5



11 = (W / 2~~) [ t2 n  - l + y)  +~~~~ 
(1+

~~~L ) ‘

(P~a) 22 
= (W~ / 2rr )~~CLn ~~~~~~ - 1 + y3 + BJ

(A2 )

(~~a) 12 = (“~ra) 21 - ~~

where V is the Euler Constant and B z - ~~~if (~~ 
IC3 + k2 )~~~O while B = 0

if (e IC2 + IC2 ) < 0.
P 0  5

The matrix elements are given by:

~ for ~: ~: 2

(
~

) lLp 
a (k ~/k ) C’ ( I c~ Ha5 ) 

~~ 
R a5

(A3)

(QP )  
= 0 ,

(~) :: - (k /k ) 
~~~a 

G(k~ ft~~ )~~~~~~,

(~) 
23

0 0  ~a R G’ (k~ H~ 5

for a ~ 5, and

20
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• - (QP ~~ = - (QP ~ = 1/ 2k

~ 
aaj 

~~~~~
. ~~czaj 23 (A4)

(°~a) 1-3 
= (~) 2:~ -

forCZ S.

The expressions for R~~ are:

i — 1, 2

and ~ ~~~ 

- 
~~~~~~~~~~~~ 

for 
- 1, 2

(%
R~~~) 

= - (
~~

)

(~ ) :: - - ‘ 

A6

(~~
) 41 - - 

(Q~~5) 23

R~
’ = - (QP \

~ a5
J 42 ~~a5) 2145

while that for T~ are :

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ) 
(A7)

(T~~~) 
~~~ 

- ‘ ~ = 1, 

~ 
~ 

= 
~~~~ 4



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~ 

- •

and

(T~~~
) 3k 

- 

~~~~~ 12

(~ ) ~ 
= - 

~~ 11 (A8)

4
~ 

- 

~~~~~ 22

~~~~~~~~~~~~~~~~~~~~

• Finally, •

(ia
P
~
) 

= (.4)i (a~5) 
, (A9)

= (~ 1) i 

~~ 
, (AlO)

• 
- to account for the alternate “+“ and “-“ signs on the left-hand side of the

four equations in Equation (22).

22
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